shader_type spatial; render_mode blend_mix,depth_draw_opaque,cull_back,diffuse_burley,specular_schlick_ggx,skip_vertex_transform; /* This is an example stripped down shader with maximum performance in mind. * Only Autoshader/Base/Over/Blend/Holes/Colormap are supported. * All terrain normal calculations take place in vetex(). * * Control map indices are processed such that each ID only requires reading ONCE. * The following features: projection, detiling, and paintable rotation / scale * cannot work with this method, without the additional samples required for blending * between same ID textures with different values across indices. */ // Defined Constants #define SKIP_PASS 0 #define VERTEX_PASS 1 #define FRAGMENT_PASS 2 #define COLOR_MAP vec4(1.0, 1.0, 1.0, 0.5) #define DIV_255 0.003921568627450 // 1. / 255. // Inline Functions #define DECODE_BLEND(control) float(control >> 14u & 0xFFu) * DIV_255 #define DECODE_AUTO(control) bool(control & 0x1u) #define DECODE_BASE(control) int(control >> 27u & 0x1Fu) #define DECODE_OVER(control) int(control >> 22u & 0x1Fu) #define DECODE_HOLE(control) bool(control >>2u & 0x1u) #if CURRENT_RENDERER == RENDERER_COMPATIBILITY #define fma(a, b, c) ((a) * (b) + (c)) #define dFdxCoarse(a) dFdx(a) #define dFdyCoarse(a) dFdy(a) #endif // Private uniforms uniform vec3 _camera_pos = vec3(0.f); uniform float _mesh_size = 48.f; uniform uint _background_mode = 1u; // NONE = 0, FLAT = 1, NOISE = 2 uniform uint _mouse_layer = 0x80000000u; // Layer 32 uniform float _vertex_spacing = 1.0; uniform float _vertex_density = 1.0; // = 1./_vertex_spacing uniform float _region_size = 1024.0; uniform float _region_texel_size = 0.0009765625; // = 1./region_size uniform int _region_map_size = 32; uniform int _region_map[1024]; uniform vec2 _region_locations[1024]; uniform float _texture_normal_depth_array[32]; uniform float _texture_ao_strength_array[32]; uniform float _texture_roughness_mod_array[32]; uniform float _texture_uv_scale_array[32]; uniform vec4 _texture_color_array[32]; uniform highp sampler2DArray _height_maps : repeat_disable; uniform highp sampler2DArray _control_maps : repeat_disable; uniform highp sampler2DArray _color_maps : source_color, filter_linear_mipmap_anisotropic, repeat_disable; uniform highp sampler2DArray _texture_array_albedo : source_color, filter_linear_mipmap_anisotropic, repeat_enable; uniform highp sampler2DArray _texture_array_normal : hint_normal, filter_linear_mipmap_anisotropic, repeat_enable; // Public uniforms uniform bool enable_texturing = true; uniform float blend_sharpness : hint_range(0, 1) = 0.5; uniform bool flat_terrain_normals = false; // Autoshader uniform float auto_slope : hint_range(0, 10) = 1.0; uniform float auto_height_reduction : hint_range(0, 1) = 0.1; uniform int auto_base_texture : hint_range(0, 31) = 0; uniform int auto_overlay_texture : hint_range(0, 31) = 1; // Macro Variation uniform bool enable_macro_variation = true; uniform vec3 macro_variation1 : source_color = vec3(1.); uniform vec3 macro_variation2 : source_color = vec3(1.); uniform float macro_variation_slope : hint_range(0., 1.) = 0.333; uniform highp sampler2D noise_texture : source_color, filter_linear_mipmap_anisotropic, repeat_enable; uniform float noise1_scale : hint_range(0.001, 1.) = 0.04; // Used for macro variation 1. Scaled up 10x uniform float noise1_angle : hint_range(0, 6.283) = 0.; uniform vec2 noise1_offset = vec2(0.5); uniform float noise2_scale : hint_range(0.001, 1.) = 0.076; // Used for macro variation 2. Scaled up 10x // Varyings & Types varying vec3 v_normal; varying vec3 v_vertex; varying mat3 TBN; //////////////////////// // Vertex //////////////////////// // Takes in world space XZ (UV) coordinates & search depth (only applicable for background mode none) // Returns ivec3 with: // XY: (0 to _region_size - 1) coordinates within a region // Z: layer index used for texturearrays, -1 if not in a region ivec3 get_index_coord(const vec2 uv, const int search) { vec2 r_uv = round(uv); vec2 o_uv = mod(r_uv,_region_size); ivec2 pos; int bounds, layer_index = -1; for (int i = -1; i < clamp(search, SKIP_PASS, FRAGMENT_PASS); i++) { if ((layer_index == -1 && _background_mode == 0u ) || i < 0) { r_uv -= i == -1 ? vec2(0.0) : vec2(float(o_uv.x <= o_uv.y), float(o_uv.y <= o_uv.x)); pos = ivec2(floor((r_uv) * _region_texel_size)) + (_region_map_size / 2); bounds = int(uint(pos.x | pos.y) < uint(_region_map_size)); layer_index = (_region_map[ pos.y * _region_map_size + pos.x ] * bounds - 1); } } return ivec3(ivec2(mod(r_uv,_region_size)), layer_index); } // Takes in descaled (world_space / region_size) world to region space XZ (UV2) coordinates, returns vec3 with: // XY: (0. to 1.) coordinates within a region // Z: layer index used for texturearrays, -1 if not in a region vec3 get_index_uv(const vec2 uv2) { ivec2 pos = ivec2(floor(uv2)) + (_region_map_size / 2); int bounds = int(uint(pos.x | pos.y) < uint(_region_map_size)); int layer_index = _region_map[ pos.y * _region_map_size + pos.x ] * bounds - 1; return vec3(uv2 - _region_locations[layer_index], float(layer_index)); } void vertex() { // Get vertex of flat plane in world coordinates and set world UV v_vertex = (MODEL_MATRIX * vec4(VERTEX, 1.0)).xyz; // Camera distance to vertex on flat plane float v_vertex_xz_dist = length(v_vertex.xz - _camera_pos.xz); // Geomorph vertex, set end and start for linear height interpolate float scale = MODEL_MATRIX[0][0]; float vertex_lerp = smoothstep(0.55, 0.95, (v_vertex_xz_dist / scale - _mesh_size - 4.0) / (_mesh_size - 2.0)); vec2 v_fract = fract(VERTEX.xz * 0.5) * 2.0; // For LOD0 morph from a regular grid to an alternating grid to align with LOD1+ vec2 shift = (scale < _vertex_spacing + 1e-6) ? // LOD0 or not // Shift from regular to symetric mix(v_fract, vec2(v_fract.x, -v_fract.y), round(fract(round(mod(v_vertex.z * _vertex_density, 4.0)) * round(mod(v_vertex.x * _vertex_density, 4.0)) * 0.25)) ) : // Symetric shift v_fract * round((fract(v_vertex.xz * 0.25 / scale) - 0.5) * 4.0); vec2 start_pos = v_vertex.xz * _vertex_density; vec2 end_pos = (v_vertex.xz - shift * scale) * _vertex_density; v_vertex.xz -= shift * scale * vertex_lerp; // UV coordinates in world space. Values are 0 to _region_size within regions UV = v_vertex.xz * _vertex_density; // UV coordinates in region space + texel offset. Values are 0 to 1 within regions UV2 = fma(UV, vec2(_region_texel_size), vec2(0.5 * _region_texel_size)); // Discard vertices for Holes. 1 lookup ivec3 v_region = get_index_coord(start_pos, VERTEX_PASS); uint control = floatBitsToUint(texelFetch(_control_maps, v_region, 0)).r; bool hole = DECODE_HOLE(control); // Show holes to all cameras except mouse camera (on exactly 1 layer) if ( !(CAMERA_VISIBLE_LAYERS == _mouse_layer) && (hole || (_background_mode == 0u && v_region.z == -1))) { v_vertex.x = 0. / 0.; } else { // Set final vertex height & calculate vertex normals. 3 lookups ivec3 uv_a = get_index_coord(start_pos, VERTEX_PASS); ivec3 uv_b = get_index_coord(end_pos, VERTEX_PASS); float h = mix(texelFetch(_height_maps, uv_a, 0).r,texelFetch(_height_maps, uv_b, 0).r,vertex_lerp); v_vertex.y = h; // Vertex normals float u = mix(texelFetch(_height_maps, get_index_coord(start_pos + vec2(1,0), VERTEX_PASS), 0).r, texelFetch(_height_maps, get_index_coord(end_pos + vec2(1,0), VERTEX_PASS), 0).r, vertex_lerp); float v = mix(texelFetch(_height_maps, get_index_coord(start_pos + vec2(0,1), VERTEX_PASS), 0).r, texelFetch(_height_maps, get_index_coord(end_pos + vec2(0,1), VERTEX_PASS), 0).r, vertex_lerp); v_normal = normalize(vec3(h - u, _vertex_spacing, h - v)); } // Convert model space to view space w/ skip_vertex_transform render mode VERTEX = (VIEW_MATRIX * vec4(v_vertex, 1.0)).xyz; // Apply terrain normals vec3 w_tangent = normalize(cross(v_normal, vec3(0.0, 0.0, 1.0))); vec3 w_binormal = normalize(cross(v_normal, w_tangent)); TBN = mat3(w_tangent, w_binormal, v_normal); NORMAL = normalize((VIEW_MATRIX * vec4(v_normal, 0.0)).xyz); BINORMAL = normalize((VIEW_MATRIX * vec4(w_binormal, 0.0)).xyz); TANGENT = normalize((VIEW_MATRIX * vec4(w_tangent, 0.0)).xyz); } //////////////////////// // Fragment //////////////////////// mat2 rotate_plane(float angle) { float c = cos(angle), s = sin(angle); return mat2(vec2(c, s), vec2(-s, c)); } void fragment() { // Recover UVs vec2 uv = UV; vec2 uv2 = UV2; // Lookup offsets, ID and blend weight vec3 region_uv = get_index_uv(uv2); const vec3 offsets = vec3(0, 1, 2); vec2 index_id = floor(uv); vec2 weight = fract(uv); vec2 invert = 1.0 - weight; vec4 weights = vec4( invert.x * weight.y, // 0 weight.x * weight.y, // 1 weight.x * invert.y, // 2 invert.x * invert.y // 3 ); ivec3 index[4]; // control map lookups, used for some normal lookups as well index[0] = get_index_coord(index_id + offsets.xy, FRAGMENT_PASS); index[1] = get_index_coord(index_id + offsets.yy, FRAGMENT_PASS); index[2] = get_index_coord(index_id + offsets.yx, FRAGMENT_PASS); index[3] = get_index_coord(index_id + offsets.xx, FRAGMENT_PASS); vec3 base_ddx = dFdxCoarse(v_vertex); vec3 base_ddy = dFdyCoarse(v_vertex); vec4 base_dd = vec4(base_ddx.xz, base_ddy.xz); // Calculate the effective mipmap for regionspace float region_mip = log2(max(length(base_ddx.xz), length(base_ddy.xz)) * _vertex_density); // Color map vec4 color_map = region_uv.z > -1.0 ? textureLod(_color_maps, region_uv, region_mip) : COLOR_MAP; if (flat_terrain_normals) { NORMAL = normalize(cross(dFdyCoarse(VERTEX),dFdxCoarse(VERTEX))); TANGENT = normalize(cross(NORMAL, VIEW_MATRIX[2].xyz)); BINORMAL = normalize(cross(NORMAL, TANGENT)); } // defaults vec4 normal_rough = vec4(0., 1., 0., 0.7); vec4 albedo_height = vec4(1.); float normal_map_depth = 1.; float ao_strength = 0.; if (enable_texturing) { // set to zero before accumulation albedo_height = vec4(0.); normal_rough = vec4(0.); normal_map_depth = 0.; ao_strength = 0.; float total_weight = 0.; float sharpness = fma(56., blend_sharpness, 8.); // Get index control data // 1 - 4 lookups uvec4 control = floatBitsToUint(vec4( texelFetch(_control_maps, index[0], 0).r, texelFetch(_control_maps, index[1], 0).r, texelFetch(_control_maps, index[2], 0).r, texelFetch(_control_maps, index[3], 0).r)); { // Auto blend calculation float auto_blend = clamp(fma(auto_slope * 2.0, (v_normal.y - 1.0), 1.0) - auto_height_reduction * 0.01 * v_vertex.y, 0.0, 1.0); // Enable Autoshader if outside regions or painted in regions, otherwise manual painted uvec4 is_auto = (control & uvec4(0x1u)) | uvec4(uint(region_uv.z < 0.0)); uint u_auto = ((uint(auto_base_texture) & 0x1Fu) << 27u) | ((uint(auto_overlay_texture) & 0x1Fu) << 22u) | ((uint(fma(auto_blend, 255.0 , 0.5)) & 0xFFu) << 14u); control = control * (1u - is_auto) + u_auto * is_auto; } // Texture weights // Vectorised Deocode of all texture IDs, then swizzle to per index mapping. ivec4 t_id[2] = {ivec4(control >> uvec4(27u) & uvec4(0x1Fu)), ivec4(control >> uvec4(22u) & uvec4(0x1Fu))}; ivec2 texture_ids[4] = ivec2[4]( ivec2(t_id[0].x, t_id[1].x), ivec2(t_id[0].y, t_id[1].y), ivec2(t_id[0].z, t_id[1].z), ivec2(t_id[0].w, t_id[1].w)); // interpolated weights. vec4 weights_id_1 = vec4(control >> uvec4(14u) & uvec4(0xFFu)) * DIV_255 * weights; vec4 weights_id_0 = weights - weights_id_1; vec2 t_weights[4] = {vec2(0), vec2(0), vec2(0), vec2(0)}; for (int i = 0; i < 4; i++) { vec2 w_0 = vec2(weights_id_0[i]); vec2 w_1 = vec2(weights_id_1[i]); ivec2 id_0 = texture_ids[i].xx; ivec2 id_1 = texture_ids[i].yy; t_weights[0] += fma(w_0, vec2(equal(texture_ids[0], id_0)), w_1 * vec2(equal(texture_ids[0], id_1))); t_weights[1] += fma(w_0, vec2(equal(texture_ids[1], id_0)), w_1 * vec2(equal(texture_ids[1], id_1))); t_weights[2] += fma(w_0, vec2(equal(texture_ids[2], id_0)), w_1 * vec2(equal(texture_ids[2], id_1))); t_weights[3] += fma(w_0, vec2(equal(texture_ids[3], id_0)), w_1 * vec2(equal(texture_ids[3], id_1))); } // Process control data to determine each texture ID present, so that only // a single sample will be needed later, as all id are contiguous when features // like detiling, scale, rotation, and projection are not present. // 2 to 16 lookups uint id_read = 0u; // 1 bit per possible ID // world normal adjustment requires acess to previous id during next iteration vec4 nrm = vec4(0.0, 1.0, 0.0, 1.0); // adjust uv scale to account for vertex spacing uv *= _vertex_spacing; for (int i = 0; i < 4; i++) { for (int t = 0; t < 2; t++) { int id = texture_ids[i][t]; uint mask = 1u << uint(id); if ((id_read & mask) == 0u) { // Set this id bit id_read |= mask; float id_w = t_weights[i][t]; float id_scale = _texture_uv_scale_array[id] * 0.5; vec2 id_uv = fma(uv, vec2(id_scale), vec2(0.5)); vec4 i_dd = base_dd * id_scale; vec4 alb = textureGrad(_texture_array_albedo, vec3(id_uv, float(id)), i_dd.xy, i_dd.zw); float world_normal = clamp(fma(TBN[0], vec3(nrm.x), fma(TBN[1], vec3(nrm.z), v_normal * vec3(nrm.y))).y, 0., 1.); nrm = textureGrad(_texture_array_normal, vec3(id_uv, float(id)), i_dd.xy, i_dd.zw); alb.rgb *= _texture_color_array[id].rgb; nrm.a = clamp(nrm.a + _texture_roughness_mod_array[id], 0., 1.); // Unpack normal map for blending. nrm.xyz = fma(nrm.xzy, vec3(2.0), vec3(-1.0)); // height weight modifier. float id_weight = exp2(sharpness * log2(id_w + alb.a * world_normal)); albedo_height += alb * id_weight; normal_rough += nrm * id_weight; normal_map_depth += _texture_normal_depth_array[id] * id_weight; ao_strength += _texture_ao_strength_array[id] * id_weight; total_weight += id_weight; } } } // normalize accumulated values back to 0.0 - 1.0 range. float weight_inv = 1.0 / total_weight; albedo_height *= weight_inv; normal_rough *= weight_inv; normal_map_depth *= weight_inv; ao_strength *= weight_inv; } // Macro variation. 2 lookups vec3 macrov = vec3(1.); if (enable_macro_variation) { float noise1 = texture(noise_texture, (uv * noise1_scale * .1 + noise1_offset) * rotate_plane(noise1_angle)).r; float noise2 = texture(noise_texture, uv * noise2_scale * .1).r; macrov = mix(macro_variation1, vec3(1.), noise1); macrov *= mix(macro_variation2, vec3(1.), noise2); macrov = mix(vec3(1.0), macrov, clamp(v_normal.y + macro_variation_slope, 0., 1.)); } // Wetness/roughness modifier, converting 0 - 1 range to -1 to 1 range, clamped to Godot roughness values float roughness = clamp(fma(color_map.a - 0.5, 2.0, normal_rough.a), 0., 1.); // Apply PBR ALBEDO = albedo_height.rgb * color_map.rgb * macrov; ROUGHNESS = roughness; SPECULAR = 1. - normal_rough.a; // Repack final normal map value. NORMAL_MAP = fma(normalize(normal_rough.xzy), vec3(0.5), vec3(0.5)); NORMAL_MAP_DEPTH = normal_map_depth; // Higher and/or facing up, less occluded. float ao = (1. - (albedo_height.a * log(2.1 - ao_strength))) * (1. - normal_rough.y); AO = clamp(1. - ao * ao_strength, albedo_height.a, 1.0); AO_LIGHT_AFFECT = (1.0 - albedo_height.a) * clamp(normal_rough.y, 0., 1.); }